Mathematics 265 Introduction to Calculus I

Study Guide :: Unit 1

Brief Review of Algebra and Trigonometry for Calculus

Algebra

To keep the topic simple, in the following calculations, we neglect the question of limitations on the values of x for which the statements are valid.

Exponents

Pay attention to how the given expressions are simplified using the laws of exponents.

  1. 2 x 5 + 3 x 7 1 5 x 6 = 2 x 5 1 5 x 6 + 3 x 7 1 5 x 6 = 2 1 5 x + x 5

  2. ( a - 7 b - 2 c 3 ) - 2 = a 1 4 b 4 c - 6 = a 1 4 b 4 c 6

  3. a 3 b 2 3 - 1 2 = 1 a 3 2 b 2 3  or

    a 3 b 2 3 - 1 2 = a - 3 4 b - 1 3 = 1 a 3 4 b 1 3

  4. x 2 y 3 x + y 3 = x 5 2 y 3 + x 2 y 3 2

Operations of Algebraic Expressions

Study the operations and simplification of the algebraic expressions given below.

  1. ( 2 x + 3 ) ( 5 - 2 x ) + x 2 + 3 x ( 4 - 1 x )

    = 10 x + 15 - 4 x 2 - 6 x + x 2 + 12 x - 3

    = ( - 4 x 2 + x 2 ) + ( 10 x - 6 x + 12 x ) + ( 15 - 3 )

    = - 3 x 2 + 16 x + 12

  2. ( 4 x 2 + y 2 z ) ( x z + 3 z 2 ) - ( x + y ) ( y 2 - x z )

    = 4 x 3 z + 12 x 2 z 2 + x y 2 + 3 y 2 z 3 - x y 2 + x 2 z - y 3 + x y z

    = 4 x 3 z + 12 x 2 z 2 + 3 y 2 z 3 - y 3 + x 2 z + x y z

  3. 3 x ( 4 x - z ) 2 + 8 x 6 y - x 5 y z + 3 x 4 y z - x 3 y

    = 48 x 3 - 24 x 2 z + 3 x z 2 - 8 x 3 + x 2 z - 3 x z

    = 40 x 3 - 23 x 2 z + 3 x z 2 - 3 x z

  4. 5 x + 3 + 1 x - 9 = 5 ( x - 9 ) + ( x + 3 ) ( x + 3 ) ( x - 9 ) = 6 x - 42 x 2 - 6 x - 27

Factorization

We will be factoring algebraic expressions continuously in this course, so pay attention to the following examples.

Similar Terms

x 3 - 5 x 2 - 4 x + 20 + 10 x do the operations of similar terms = ( x 3 - 5 x 2 + 6 x ) + 20 group similar terms = x ( x 2 - 5 x + 6 ) + 20 factor the common term with the lowest exponent

Conjugates

The binomial terms ( a + b ) and ( a - b ) are conjugates of each other. Observe that their product

( a - b ) ( a + b ) = a 2 - b 2

is a difference of squares. So, for example,

4 x 2 y 4 - 6 z 6 = ( 2 x y 2 ) 2 - ( 6 z 3 ) 2 = ( 2 x y 2 + 6 z 3 ) ( 2 x y 2 - 6 z 3 ) .

Quadratics

A quadratic is an expression of the form a x 2 + b x + c with b and c any real numbers and a a nonzero real number.

  • A quadratic is a perfect square if b = ± 2 a c . If so, then

    a x 2 + b x + c = a x ± c 2 .

    The quadratic 4 x 2 - 2 0 x + 2 5 is a perfect square because

    a = 4 , c = 2 5 and b = - 2 4 ( 2 5 ) = - 2 1 0 0 = - 2 0 .

    Then,

    4 x 2 - 2 0 x + 2 5 = ( 2 x - 5 ) 2 .

    Similarly, 4 t 2 - 1 2 t + 9 is a perfect square, and

    4 t 2 - 1 2 t + 9 = ( 2 t - 3 ) 2 .

  • If we have a quadratic expression of the form x 2 + b x + c , and we can find two numbers k and m such that c = k m and b = k + m , then

    x 2 + b x + c = ( x + k ) ( x + m ) .

    In the quadratic equation x 2 - 2 x - 3 5 , we see that ( - 7 ) ( 5 ) = - 3 5 and - 7 + 5 = - 2 ; hence, x 2 - 2 x - 3 5 = ( x - 7 ) ( x + 5 ) .

  • The solutions of the quadratic equation a x 2 + b x + c = 0 is given by the “quadratic formula”:

    x = - b ± b 2 - 4 a c 2 a .

    Using the quadratic formula, we find that the solutions of the equation 3 2 y 2 + 4 y - 6 = 0 are

    y = - 4 ± 1 6 + 7 6 8 6 4 = - 4 ± 2 8 6 4 ;

    that is, y = - 1 2 and y = 3 8 . Moreover,

    y + 1 2 y - 3 8 = y 2 + y 8 - 3 1 6

    and we see that

    3 2 y + 1 2 y - 3 8 = 3 2 y 2 + 4 y - 6 .

    Verify the following factorization:

    3 2 y 2 + 4 y - 6 = 2 2 y + 1 2 8 y - 3 8 = 2 ( 2 y + 1 ) ( 8 y - 3 ) .

    Let us try another example: the solutions of - 8 x 2 + 1 0 x + 3 = 0 are

    x = - 1 0 ± 1 0 0 + 9 6 - 1 6 = - 1 0 ± 1 4 - 1 6 ;

    hence, x = 3 2 and x = - 1 4 .

    Since

    x - 3 2 x + 1 4 = x 2 - 5 x 4 - 3 8 ,

    we have

    8 x 2 + 10 x + 3 = 8 ( x 3 2 ) ( x + 1 4 ) = ( 2 ( x 3 2 ) 4 ( x + 1 4 ) ) = ( 2 x 3 ) ( 4 x + 1 ) .

Other Factorizations

See the sections titled “Factoring Special Polynomials” and “Binomial Theorem” on page 1 of the “Reference Pages” at the beginning of the textbook. To apply these factorizations, identify the corresponding terms of x and y . For example, consider the following difference of cubes.

The expression ( 8 a 3 - 2 7 z 6 ) is a difference of cubes where x = 2 a and y = 3 z 2 ; hence,

( 8 a 3 - 2 7 z 6 ) = ( 2 a - 3 z 2 ) ( 4 a 2 + 6 a z 2 + 9 z 4 ) .

Rational Expressions

To simplify rational expressions, we factor and cancel equal terms.

  1. 5 x + 3 5 2 0 x = 5 ( x + 7 ) 5 ( 4 x ) = x + 7 4 x

  2. x 3 + x 2 x + 1 = x 2 ( x + 1 ) x + 1 = x 2

  3. x 2 + 6 x + 5 x 2 - 2 5 = ( x + 5 ) ( x + 1 ) ( x + 5 ) ( x - 5 ) = x + 1 x - 5

  4. x 3 + 5 x 2 + 6 x x 2 - x - 1 2 = x ( x 2 + 5 x + 6 ) ( x - 4 ) ( x + 3 ) = x ( x + 2 ) ( x + 3 ) ( x - 4 ) ( x + 3 ) = x ( x + 2 ) x - 4

We can also simplify rational expressions by long division.

For example, to simplify 7 x - 9 - 4 x 2 + 4 x 3 2 x - 1 , we divide:

\begin{array}{r} \require{enclose} 2x - 1 \enclose{longdiv}{4x^3 - 4x^2 + 7x - 9} \\[-3pt] \end{array}

arrange terms in the dividend and divisor in decreasing order of their exponents


\begin{array}{r} \require{enclose} {2x^2}\hspace{4.1em} \\[-3pt] 2x - 1 \enclose{longdiv}{4x^3 - 4x^2 + 7x - 9} \\[-3pt] \end{array}

divide \({\displaystyle\frac{4x^3}{2x}} = 2x^2\)


\begin{array}{r} \require{enclose} {2x^2}\hspace{4.1em} \\[-3pt] 2x - 1 \enclose{longdiv}{4x^3 - 4x^2 + 7x - 9} \\[-3pt] {4x^3 - 2x^2}\hspace{4.01em} \\[-3pt] \end{array}

multiply \(2x^2(2x - 1) = 4x^3 - 2x^2\)


\begin{array}{r} \require{enclose} {2x^2}\hspace{4.1em} \\[-3pt] 2x - 1 \enclose{longdiv}{\phantom{-}4x^3 - 4x^2 + 7x - 9} \\[-3pt] \underline{- 4x^3 + 2x^2}\hspace{4em} \\[-3pt] {\phantom{- 4x^3 } - 2x^2 + 7x - 9} \\[-3pt] \end{array}

subtract \(4x^3 - 4x^2 - (4x^3 - 2x^2)\)
\(= 4x^3 - 4x^2 - 4x^3 + 2x^2\)
\(= -2x^2\);
bring down \(7x - 9\);
the new dividend is \(-2x^2 + 7x -9\)


\begin{array}{r} \require{enclose} 2x^2 - \phantom{0}x\hspace{1.7em} \\[-3pt] 2x - 1 \enclose{longdiv}{\phantom{-}4x^3 - 4x^2 + 7x - 9} \\[-3pt] \underline{- 4x^3 + 2x^2}\hspace{4em}\\[-3pt] {\phantom{- 4x^3 } - 2x^2 + 7x - 9}\\[-3pt] {\phantom{- 4x^3 } - 2x^2 + \phantom{7}x \phantom{- 9}}\hspace{0.4em} \\ \end{array}

we repeat the process:
divide ${\displaystyle\frac{-2x^2}{2x}} = -x$
then multiply


\begin{array}{r} \require{enclose} 2x^2 - \phantom{0}x\hspace{1.7em} \\[-3pt] 2x - 1 \enclose{longdiv}{\phantom{-}4x^3 - 4x^2 + 7x - 9} \\[-3pt] \underline{- 4x^3 + 2x^2}\hspace{4em} \\[-3pt] {\phantom{- 4x^3 } - 2x^2 + 7x - 9} \\[-3pt] {\phantom{4x^3} \underline{ \phantom{{}-{}} 2x^2 - \phantom{7}x \phantom{{}-{}} \phantom{9} } } \\[-3pt] {\phantom{4x^3 - 4x^2 + } 6x - 9} \\ \end{array}

subtract: note that
$-(-2x^2+x)=2x^2-x$;
the new dividend is $6x-9$


\begin{array}{r} \require{enclose} 2x^2 - \phantom{0}x + 3 \\[-3pt] 2x - 1 \enclose{longdiv}{\phantom{-}4x^3 - 4x^2 + 7x - 9} \\[-3pt] \underline{- 4x^3 + 2x^2}\hspace{4em} \\[-3pt] {\phantom{- 4x^3 } - 2x^2 + 7x - 9} \\[-3pt] {\phantom{4x^3} \underline{ \phantom{{}-{}} 2x^2 - \phantom{7}x \phantom{{}-{}} \phantom{9} } } \\[-3pt] {\phantom{4x^3 - 4x^2 + } 6x - 9} \\[-3pt] {\phantom{4x^3 - 4x^2 } \underline{ - 6x + 3}} \\[-3pt] {\phantom{4x^3 - 4x^2 - 6x } - 6} \\ \end{array}

repeating the process

The remainder is - 6 ; hence,

7 x - 9 - 4 x 2 + 4 x 3 2 x - 1 = 2 x 2 - x + 3 - 6 2 x - 1 .

Rationalization

To change quotient expressions with square roots, we rationalize; that is, we multiply by the conjugate to change the expression into a different, more manageable one.

For example, to simplify

x 2 - 8 1 x - 3 ,

it is helpful to realize that the conjugate of x - 3 is x + 3 , and ( x - 3 ) ( x + 3 ) = x - 9 . So,

\begin{align*}\frac{x^2 - 81}{\sqrt{x} - 3} & = \frac{(x - 9)(x + 9)(\sqrt{x} + 3)}{x - 9}\\ & = (x + 9)(\sqrt{x} + 3) \end{align*}

Similarly,

\begin{align*} \frac{\sqrt{h + 1} - 1}{h} & = \frac{(\sqrt{h + 1} - 1)(\sqrt{h + 1} + 1)}{h(\sqrt{h + 1} + 1)}\\ & = \frac{1 + h -1}{h(\sqrt{1 + h} + 1)}\\ & = \frac{1}{\sqrt{1 + h} + 1} \end{align*}